Measure the diameter of the Sun

Measure the diameter of an oil molecule

The volume of a cylinder V = $h \times \pi \times d^2/4$ where d is the diameter and h is the height of the cylinder. The oil spreads out one molecule thick so h = the diameter of the oil molecule.

$$h = 4V/\pi \times d^2$$

Measurement of volume of oil droplet	The ruler has an absolute uncertainty of 1mm	
	The pipette has an absolute uncertainty of 0.01cm ³	
	Percentage uncertainty in the volume of the oil droplet	
Measurement of diameter of oil cylinder		
	Percentage uncertainty in diameter of the oil cylinder	
Calculated value of height of oil cylinder		
	Percentage uncertainty in the height of the oil cylinder	
Absolute uncertainty of height of oil cylinder		
The oil molecule's actual diameter is 1x10 ⁻⁹ m		
Is this within the absolute uncertainty of your calculated value?		

Measure the speed of microwaves

Chocolate will melt at the points of maximum heating (anti-nodes)

The distance between consecutive anti-nodes is half a wavelength $d = 0.5\lambda$

Speed of microwaves is frequency x wavelength $v = f x \lambda$

The frequency of the microwaves are 2450×10^6 Hz	The ruler has an absolute uncertainty of 1mm	
and have an absolute uncertainty of 1x10 ⁶ Hz	Percentage uncertainty in the distance between anti	
Measurement of distance between anti-nodes	-nodes	
Calculated value of Wavelength	Percentage uncertainty in speed of microwaves	
Calculated value of speed of microwaves	Absolute uncertainty of speed of microwaves	
The speed of microwaves is 3.00x10 ⁸ m/s		
Is this within the absolute uncertainty of your calculated value?		

Measure Earth's gravitational field strength

The square of the time period of a pendulum $T^2 = 4\pi^2 x L/g$ Where L is the length of the pendulum and g is the gravitational field strength. Timing 20 oscillations will reduce the % uncertainty in our measurement.

$$g = 4\pi^2 \times L / T^2$$

Measurement of the length of the pendulum	The ruler has an absolute uncertainty of 1mm	
	The timer has an absolute uncertainty of the reaction time of the user (roughly 0.25s)	
Measurement of the time for 20 oscillations	Percentage uncertainty in the length of the pendulum	
T for 1 oscillation =		
Calculated value of g	Percentage uncertainty in the time for 20 oscillations	
Absolute uncertainty of g	Percentage uncertainty in the gravitational field strength	
The gravitational field strength of Earth is actually 9.81 m/s ²		
Is this within the absolute uncertainty of your calculated value?		

Calculating Percentage Uncertainties

Reading on meter = 25.2 V

Finest division = 0.1 V

This is the absolute uncertainty **± 0.1 V**

%Uncertainty = Absolute Uncertainty x 100 Reading Taken

% Uncertainty = (0.1/25.2) x 100 = 0.4 %

Combining % Uncertainties

What happens in the formula	What to do to calculate uncertainties
AxB or A÷B	Add percentage uncertainty of A with percentage uncertainty in B
A ²	Double the percentage uncertainty of A
A ⁿ	Multiply the percentage uncertainty by n

 $A_1 + A_2$ or $A_1 - A_2$ Combine the absolute uncertainties before calculating the % uncertainty