Measure the diameter of the Sun

$\frac{\text { Sun's diameter }}{\text { distance to the Sun }}=\frac{\text { image diameter }}{\text { distance from pinhole to paper }}$

$$
\text { Sun's diameter }=\frac{\text { image diameter } \times \text { distance to the Sun }}{\text { distance from pinhole to paper }}
$$

| The distance from Earth to the Sun is $1.496 \times 10^{11} \mathrm{~m}$ |
| :--- | :--- | :--- |
| and has an absolute uncertainty of 1 m |
| Measurement of image diameter | | The ruler has an absolute uncertainty of 1 mm |
| :--- |
| Percentage uncertainty in image diameter |
| Measurement of distance from pinhole to paper | | Percentage uncertainty in distance from pinhole to |
| :--- |
| paper |

The Sun's actual diameter is $1.3927 \times 10^{9} \mathrm{~m}$
Is this within the absolute uncertainty of your calculated value?

Measure the diameter of an oil molecule

The volume of a cylinder $V=h \times \pi \times d^{2} / 4$ where d is the diameter and h is the height of the cylinder.
The oil spreads out one molecule thick so $\mathrm{h}=$ the diameter of the oil molecule.

$$
h=4 V / \pi \times d^{2}
$$

Measurement of volume of oil droplet
Measurement of diameter of oil cylinder

Calculated value of height of oil cylinder

Absolute uncertainty of height of oil cylinder

The ruler has an absolute uncertainty of 1 mm The pipette has an absolute uncertainty of $0.01 \mathrm{~cm}^{3}$ Percentage uncertainty in the volume of the oil droplet

Percentage uncertainty in diameter of the oil cylinder

Percentage uncertainty in the height of the oil cylinder

The oil molecule's actual diameter is $1 \times 10^{-9} \mathrm{~m}$ Is this within the absolute uncertainty of your calculated value?

Measure the speed of microwaves

Chocolate will melt at the points of maximum heating (anti-nodes)
The distance between consecutive anti-nodes is half a wavelength $d=0.5 \lambda$
Speed of microwaves is frequency x wavelength $\quad v=f x \lambda$

The frequency of the microwaves are $2450 \times 10^{6} \mathrm{~Hz}$ and have an absolute uncertainty of $1 \times 10^{6} \mathrm{~Hz}$ Measurement of distance between anti-nodes	The ruler has an absolute uncertainty of 1 mm Percentage uncertainty in the distance between anti -nodes
Calculated value of Wavelength	Percentage uncertainty in speed of microwaves
Calculated value of speed of microwaves	Absolute uncertainty of speed of microwaves
The speed of microwaves is $3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$	
Is this within the absolute uncertainty of your calculated value?	

Measure Earth's gravitational field strength

The square of the time period of a pendulum $T^{2}=4 \pi^{2} \times L / g$ Where L is the length of the pendulum and g is the gravitational field strength. Timing 20 oscillations will reduce the $\%$ uncertainty in our measurement.

$$
g=4 \pi^{2} \times L / T^{2}
$$

Measurement of the length of the pendulum
Measurement of the time for 20 oscillations

The ruler has an absolute uncertainty of 1 mm The timer has an absolute uncertainty of the reaction time of the user (roughly 0.25s)

Measurement of the time for 20 oscillations
Percentage uncertainty in the length of the pendulum

T for 1 oscillation =
Calculated value of g

Absolute uncertainty of g

Percentage uncertainty in the time for 20 oscillations

Percentage uncertainty in the gravitational field strength

The gravitational field strength of Earth is actually $9.81 \mathrm{~m} / \mathrm{s}^{2}$
Is this within the absolute uncertainty of your calculated value?

Calculating Percentage Uncertainties
 $$
\text { Reading on meter }=25.2 \mathrm{~V}
$$

 25.20
0
0
0

Finest division $=0.1 \mathrm{~V}$
This is the absolute uncertainty $\pm 0.1 \mathrm{~V}$

\%Uncertainty $=\frac{\text { Absolute Uncertainty }}{\text { Reading Taken }} 100$

$$
\% \text { Uncertainty }=(0.1 / 25.2) \times 100=0.4 \%
$$

Combining \% Uncertainties

What happens in the formula
 What to do to calculate uncertainties

$A \times B$ or $A \div B$

Add percentage uncertainty of A with percentage uncertainty in B Double the percentage uncertainty of A uncertainty by n
$A_{1}+A_{2}$ or $A_{1}-A_{2}$ Combine the absolute uncertainties before calculating the \% uncertainty

