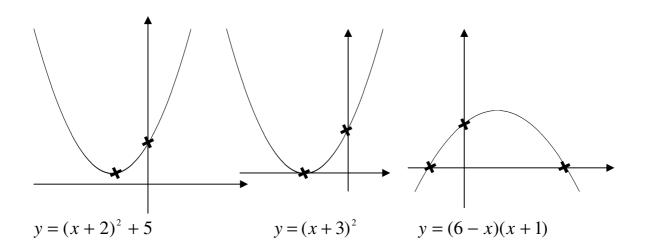

Quadratic GraphsLabel the coordinates of all the points marked x.

$$y = (x+2)^2 - 3$$

$$y = (x+4)(x-1)$$


$$y = (2x - 1)(x - 3)$$

$$y = x(x+4)$$

$$y = (x-2)(x+4)$$
 $y = (x-1)^2 - 3$

$$y = (x-1)^2 - 3$$

Card Set: Equations

y = 4x + 4	4y = x + 3
y = 8x - 3	y + 4x + 6 = 0
3y = 2x - 8	y + 6x = 11
2y + 8 = 3x	2y + x = 4
2y = 8x + 3	y = 6x - 4

Properties

These lines are parallel	These lines are perpendicular
These lines have the same y-intercept	These lines have the same x-intercept
These lines go through the point (1,5)	

Functions Stack

Place the functions inside the correct places in the table.

Is there more than one solution?

There are three empty spaces, can you create functions that would fit in them?

	Symmetrical about the y axis	Rotational Symmetry about the origin	No Symmetry
Has 0 asymptotes			
Has 2 asymptotes			
Goes through the origin			

$$y = x^{4} + 1$$

$$y = \frac{1}{x}$$

$$y = \frac{1}{x^{2}}$$

$$y = \frac{1}{x^{2}}$$

$$y = \frac{1}{x^{2}}$$

$$y = 2x^{3} - 4x$$