
Computer Science and an

introduction to Pascal

A Level Computing – Mr Sheehan (MSH)

Logging in

 Username: ict001-ict030

 Password: password

Virtual Machine:

Start -> Subject Resources -> Programming

 What is a virtual machine?

 Why do you think we use a

virtual machine for programming in school?

IDE and Programming Language

The programming language we will be using in class is
Pascal.

Most would of you would have used Python for GCSE and
so this will give you the experience of another language.

The IDE we currently use in lessons is Lazarus version 2.0.12
This can be downloaded for free here:

https://www.lazarus-ide.org/index.php?page=downloads

 What is an IDE?

https://www.lazarus-ide.org/index.php?page=downloads

Key words and terms
Term Explanation

Statement any individual step/instruction in the code

Identifier A name for your variables, functions etc.

Reserved

words

Words which are reserved for a specific purpose in the programming

language and so can’t be used as an identifier . e.g. IF… WHILE… DO…

Subroutines a sub-program, a set of statements written to perform a given task as

part of solving the main problem. It can be called by using its identifier.

Procedure a subroutine which performs a task but has no return value

Function specifically a subroutine which returns a single value and can therefore

be used in expressions.

With the person next to you, discuss the definitions of
these words in relation to programming.

The Basic Form

 At its simplest, a Pascal program has the form

 Identifiers can only contain letters, underscores or
numbers and must start with a letter.

PROGRAM n;

BEGIN

{statements}

END.

Where n is a program name

PROGRAM, BEGIN and END

are reserved words.

Getting Started

 Lazarus opens automatically when opening the virtual
machine. Ensure you have it on screen.

Click Start -> New -> Program

 The first line of the program is called the program
heading. The rest of the program is the program body.

 At least one space or end-of-line must appear between
adjacent identifiers, reserved words and numbers.

First Program: Hello World!

 To see the effect of a program there must be some output. A
single line of output can be produced using the writeln
statement.

 The text to be output must always appear within apostrophes
or string quotes.

 Statements must always end with a semi-colon.

 Copy this code. Run the program. What is the problem with it?

 Add readln() under writeln(‘Hello World!’); to fix this.

PROGRAM helloworld;

BEGIN

writeln(‘Hello World!’);

END.

What is wrong with the code?

PROGRAM while;

BEGIN

writeln(‘Hello World!’);

END.

PROGRAM helloworld;

BEGIN

writeln(‘Hello World!’)

END.

PROGRAM helloworld;

BEGIN

writeln(Hello World!);

END.

PROGRAM 2_helloworld;

BEGIN

writeln(‘Hello World!’);

END.

Try the following Output Examples

PROGRAM helloworld;

BEGIN

writeln(‘Hello’, ’World!’);

readln();

END.

PROGRAM helloworld;

BEGIN

writeln(‘Hello’);

Writeln(‘World!’);

readln();

END.

PROGRAM helloworld;

BEGIN

writeln(‘Hello’);

writeln();

writeln(‘World!’);

readln();

END.

PROGRAM helloworld;

BEGIN

write(‘Hello’);

writeln(‘World!’);

readln();

END.

Output

 Spaces and end-of-line make no difference to the

compiler. To the human reader, however, their inclusion is

very important; neat layout is a major contributory factor

towards program transparency.

 Comments are helpful to identify what is happening in a

particular part of the program, not only for you but

anyone else who reads the code.

PROGRAM helloworld;

BEGIN

//Prints “Hello World! To the screen

{Prints “Hello World! To the screen}

writeln(‘Hello World!’);

END.

Comments

Exercises

1. Print your name to the screen.

2. Print your name to the screen in a border made of a

character of your choice.

3. Write a program to draw a rocket.

4. Write a program to print your initials

in large letters.

*

** **

Extension

The following code has 3 integers (whole numbers) set up
to be used in the program. Currently the program asks the
user for a number and stores it in the variable Num1

Complete the program so the user must enter 2 numbers.
Then have the sum of those two numbers printed to the
console.

