
1

Paper 1: Principles of Computer Science

Content

Topic 1: Computational thinking

Students are expected to develop a set of computational thinking skills that enable them to design,

implement and analyse algorithms for solving problems.

Students are expected to be familiar with and use the Programming Language Subset (PLS) document

provided on the GCSE in Computer Science section of our website.

The flowchart symbols students are expected to be familiar with and use are shown in Appendix

2.

Subject content Students should:

1.1 Decomposition 1.1.1 understand the benefit of using decomposition and

and abstraction abstraction to model aspects of the real world and analyse,

 understand and solve problems

 1.1.2 understand the benefits of using subprograms

1.2 Algorithms 1.2.1 be able to follow and write algorithms (flowcharts,

 pseudocode*, program code) that use sequence, selection,

 repetition (count-controlled, condition-controlled) and

 iteration (over every item in a data structure), and input,

 processing and output to solve problems

 1.2.2 understand the need for and be able to follow and write

 algorithms that use variables and constants and one- and

 two-dimensional data structures (strings, records, arrays)

 1.2.3 understand the need for and be able to follow and write

 algorithms that use arithmetic operators (addition, subtraction,

 division, multiplication, modulus, integer division,

 exponentiation), relational operators (equal to, less than,

 greater than, not equal to, less than or equal to, greater than

 or equal to) and logical operators (AND, OR, NOT)

 1.2.4 be able to determine the correct output of an algorithm for

 a given set of data and use a trace table to determine what

 value a variable will hold at a given point in an algorithm

 1.2.5 understand types of errors that can occur in programs

 (syntax, logic, runtime) and be able to identify and correct

 logic errors in algorithms

 1.2.6 understand how standard algorithms (bubble sort, merge

 sort, linear search, binary search) work

https://qualifications.pearson.com/en/qualifications/edexcel-gcses/computer-science-2020.html

2

Topic 2: Data

Computers use binary to represent different types of data.

Students are expected to learn how different types of data are represented in a computer.

Subject content Students should:

2.1 Binary 2.1.1 understand that computers use binary to represent data

 (numbers, text, sound, graphics) and program instructions

 and be able to determine the maximum number of states

 that can be represented by a binary pattern of a given

 length

 2.1.2 understand how computers represent and manipulate

 unsigned integers and two’s complement signed integers

 2.1.3 be able to convert between denary and 8-bit binary

 numbers (0 to 255, -128 to +127)

 2.1.4 be able to add together two positive binary patterns and

 apply logical and arithmetic binary shifts

 2.1.5 understand the concept of overflow in relation to the

 number of bits available to store a value

 2.1.6 understand why hexadecimal notation is used and be able to

 convert between hexadecimal and binary

2.2 Data 2.2.1 understand how computers encode characters using 7-bit

representation ASCII

 2.2.2 understand how bitmap images are represented in binary

 (pixels, resolution, colour depth)

 2.2.3 understand how analogue sound is represented in binary

 (amplitude, sample rate, bit depth, sample interval)

 2.2.4 understand the limitations of binary representation of data

 when constrained by the number of available bits

2.3 Data storage 2.3.1 understand that data storage is measured in binary

and compression multiples (bit, nibble, byte, kibibyte, mebibyte, gibibyte,

 tebibyte) and be able to construct expressions to calculate

 file sizes and data capacity requirements

 2.3.2 understand the need for data compression and methods of

 compressing data (lossless, lossy)

3

Topic 3: Computers

Students must be familiar with the hardware and software components that make up a

computer system.

Subject content Students should:

3.1 Hardware 3.1.1 understand the von Neumann stored program concept and

 the role of main memory (RAM), CPU (control unit,

 arithmetic logic unit, registers), clock, address bus, data

 bus, control bus in the fetch-decode-execute cycle

 3.1.2 understand the role of secondary storage and the ways in

 which data is stored on devices (magnetic, optical, solid

 state)

 3.1.3 understand the concept of an embedded system and what

 embedded systems are used for

3.2 Software 3.2.1 understand the purpose and functionality of an operating

 system (file management, process management,

 peripheral management, user management)

 3.2.2 understand the purpose and functionality of utility software

 (file repair, backup, data compression, disk

 defragmentation, anti-malware)

 3.2.3 understand the importance of developing robust software

 and methods of identifying vulnerabilities (audit trails, code

 reviews)

3.3 Programming 3.3.1 understand the characteristics and purposes of low-level

languages and high-level programming languages

 3.3.2 understand how an interpreter differs from a compiler in

 the way it translates high-level code into machine code

4

Topic 4: Networks

Most computer applications in use today would not be possible without networks. Students

should understand the key principles behind the organisation of computer networks.

Subject content

Students should:

4.1 Networks 4.1.1 understand why computers are connected in a network

 4.1.2 understand different types of networks (LAN, WAN)

 4.1.3 understand how the internet is structured

 (IP addressing, routers)

 4.1.4 understand how the characteristics of wired and wireless

 connectivity impact on performance (speed, range, latency,

 bandwidth)

 4.1.5 understand that network speeds are measured in bits per

 second (kilobit, megabit, gigabit) and be able to construct

 expressions involving file size, transmission rate and time

 4.1.6 understand the role of and need for network protocols

 (Ethernet, Wi-Fi, TCP/IP, HTTP, HTTPS, FTP) and email

 protocols (POP3, SMTP, IMAP)

 4.1.7 understand how the 4-layer (application, transport,

 internet, link) TCP/IP model handles data transmission

 over a network

 4.1.8 understand characteristics of network topologies (bus, star,

 mesh)

4.2 Network 4.2.1 understand the importance of network security, ways of

security identifying network vulnerabilities (penetration testing,

 ethical hacking) and methods of protecting networks

 (access control, physical security, firewalls)

5

Topic 5: Issues and impact

Students should be aware of the influence of digital technology and recognise some of the

issues and the impact on wider society associated with its use.

Subject content

Students should:

5.1 Environmental 5.1.1 understand environmental issues associated with the use

 of digital devices (energy consumption, manufacture,

 replacement cycle, disposal)

5.2 Ethical and legal 5.2.1 understand ethical and legal issues associated with the

 collection and use of personal data (privacy, ownership,

 consent, misuse, data protection)

 5.2.2 understand ethical and legal issues associated with the use

 of artificial intelligence, machine learning and robotics

 (accountability, safety, algorithmic bias, legal liability)

 5.2.3 understand methods of intellectual property protection for

 computer systems and software (copyright, patents,

 trademarks, licencing)

5.3 Cybersecurity 5.3.1 understand the threat to digital systems posed by malware

 (viruses, worms, Trojans, ransomware, key loggers) and

 how hackers exploit technical vulnerabilities (unpatched

 software, out-of-date anti-malware) and use social

 engineering to carry out cyberattacks

 5.3.2 understand methods of protecting digital systems and data

 (anti-malware, encryption, acceptable use policies, backup

 and recovery procedures)

6

Paper 2: Application of Computational Thinking

Overview

Learning to program is a core component of a computer science course. Students should be

competent at designing, reading, writing and debugging programs. They must be able to

apply their skills to solve real problems and produce readable, robust programs.

Content

Topic 6: Problem solving with programming

All problems set in the practical programming tasks in the examination can be solved with

the functionalities presented in the Programming Language Subset (PLS) document provided

on the GCSE in Computer Science section of our website.

Subject content

Students should:

6.1 Develop code

6.1.1 be able to use decomposition and abstraction to analyse,

understand and solve problems

6.1.2 be able to read, write, analyse and refine programs written

in a high-level programming language

6.1.3 be able to convert algorithms (flowcharts, pseudocode*)

into programs

6.1.4 be able to use techniques (layout, indentation, comments,

meaningful identifiers, white space) to make programs

easier to read, understand and maintain

6.1.5 be able to identify, locate and correct program errors

(logic, syntax, runtime)

6.1.6 be able to use logical reasoning and test data to evaluate a

program’s fitness for purpose and efficiency (number of

compares, number of passes through a loop, use of

memory)

*In this specification, the term ‘pseudocode’ is used to denote an informal written description

of a program. Pseudocode uses imprecise English language statements and does not require

any strict programming syntax.

https://qualifications.pearson.com/en/qualifications/edexcel-gcses/computer-science-2020.html

7

Subject content Students should:

6.2 Constructs 6.2.1 understand the function of and be able to identify the

 structural components of programs (constants, variables,

 initialisation and assignment statements, command

 sequences, selection, repetition, iteration, data structures,

 subprograms, parameters, input/output)

 6.2.2 be able to write programs that make appropriate use of

 sequencing, selection, repetition (count-controlled,

 condition-controlled), iteration (over every item in a data

 structure) and single entry/exit points from code blocks

 and subprograms

6.3 Data types and 6.3.1 be able to write programs that make appropriate use of

structures primitive data types (integer, real, Boolean, char) and one-

 and two-dimensional structured data types (string, array,

 record)

 6.3.2 be able to write programs that make appropriate use of

 variables and constants

 6.3.3 be able to write programs that manipulate strings (length,

 position, substrings, case conversion)

6.4 Input/output 6.4.1 be able to write programs that accept and respond

 appropriately to user input

 6.4.2 be able to write programs that read from and write to

 comma separated value text files

 6.4.3 understand the need for and be able to write programs

 that implement validation (length check, presence check,

 range check, pattern check)

 6.4.4 understand the need for and be able to write programs

 that implement authentication (ID and password, lookup)

6.5 Operators 6.5.1 be able to write programs that use arithmetic operators

 (addition, subtraction, division, multiplication, modulus,

 integer division, exponentiation)

 6.5.2 be able to write programs that use relational operators

 (equal to, less than, greater than, not equal to, less than

 or equal to, greater than or equal to)

 6.5.3 be able to write programs that use logical operators (AND,

 OR, NOT)

6.6 Subprograms 6.6.1 be able to write programs that use pre-existing (built-in,

 library) and user-devised subprograms (procedures,

 functions)

 6.6.2 be able to write functions that may or may not take

 parameters but must return values, and procedures that

 may or may not take parameters but do not return values

 6.6.3 understand the difference between and be able to write

 programs that make appropriate use of global and local

 variables

